
www.manaraa.com

1

Squeal: A Programming Interface to Structural Information on the Web

Ellen Spertus Lynn Andrea Stein
Mills College MIT AI Lab

5000 MacArthur Blvd. 545 Technology Square
Oakland, CA 94613 Cambridge, MA 02139

spertus@mills.edu las@ai.mit.edu

Abstract
The World-Wide Web contains an abundance of
semi-structured information, including hyper-
links between pages, structure within hypertext
pages, and structure within the addresses of
pages (URLs). Existing Web tools and applica-
tions, however, usually treat the Web as though
it were a flat text collection. In earlier work, we
described “Just-in-Time Databases” and the
associated Squeal schema, which allow the
Web’s structure to be queried easily by provid-
ing the illusion that the entire Web is in a stan-
dard relational. In this paper, we describe a
number of “ParaSites” built on top of Squeal to
show the utility of structural information to a
variety of applications and the ease with which
such applications can be written. Specifically,
we present Squeal implementations of a recom-
mender system, a personal home page finder,
and a moved page finder.

Introduction
The World-Wide Web contains hundreds of
millions of pages of data. While many Web
search tools treat the Web as though it were
merely a distributed collection of flat docu-
ments, it can also be viewed as an enormous set
of federated databases containing semi-
structured information that can be automatically
mined for knowledge discovery. Human beings
browsing the Web take advantage of the fol-
lowing types of semi-structured information:

• structure within a page, such as its header
and list structure (intra-document structure)

• hyperlinks connecting pairs of documents
(inter-document structure)

• structural information in the uniform re-
source locators (URLs), the addresses of
Web pages

Elsewhere, we have described a language,
Squeal, and a technology, Just-In-Time Data-
bases, that allow easy access to the Web’s
structural information [19][20]. In this paper,
we discuss some of the applications that have
been built on top of Squeal. Specifically, we
describe a recommender system, a personal
home page finder, and a moved page finder. We
call our applications ParaSites because they ex-
ploit information on the Web in a manner unin-
tended by the information’s authors. Our goal is
not to argue that these are the best possible ap-
plications but to show the ease with which
structural algorithms can be implemented in
Squeal and the power of even simple structure-
based applications.

Background
Web
The World-Wide Web consists of pages of data,
addressed by uniform resource locators (URLs)
containing each page’s host machine name and
path. We focus on pages written in hypertext
markup language (HTML). HTML includes tags
and attributes to specify intra-document infor-
mation, such as a page’s logical structure and
how it should be visually rendered. HTML also
incorporates inter-document information, such
as what pages are connected by hyperlinks. If
page P1 contains a hyperlink with destination
P2, we say that P1 points to P2.

Squeal and Just-in-Time Databases
The Squeal interpreter [19][20] allows Struc-
tured Query Language (SQL) queries on the

www.manaraa.com

2

Web as though it were a relational database,
with certain limitations because it is impractical
(if not impossible [1]) to determine complete
information about the Web. Squeal answers
queries as completely as possible by querying
search engines and fetching and parsing web
pages in response to user queries. For example,
consider the hyperlink relation, which consists
of three fields:

• source, the URL of the page on which the
hyperlink appears

• anchor, the text that the user selects in order
to follow a link

• destination, the URL that is the target of a
hyperlink

For example, a hyperlink from the ACM SIGIR
upcoming events page to the Digital Libraries
‘99 page would consist of the following values:

• source:
“www.acm.org/sigir/UpcomingEvents.html”

• anchor: “Digital Libraries '99”

• destination: “fox.cs.vt.edu/DL99/”

One permissible query would be:

SELECT destination
FROM hyperlink
WHERE
source=“www.acm.org/sigir/UpcomingEvents.html”

The Squeal interpreter would respond by fetch-
ing the named page from the Web, parsing it,
and returning a list of the destinations of the
page’s hyperlinks, i.e., the pages pointed to by
“www.acm.org/sigir/UpcomingEvents.html”.
Another legal query would be:

SELECT source FROM hyperlink
WHERE destination=“http://fox.cs.vt.edu/DL99/”

The Squeal interpreter would:

1. Ask a search engine (e.g., AltaVista) what
pages point to the named page.

2. Fetch all of the pages returned by the search
engine, verifying which ones still point to
the named page.

3. Return to the user a list of the pages that
point to “http://fox.cs.vt.edu/DL99/”.

The Squeal interpreter thus provides the illusion
that the Web is in a database that the user can
query. In addition to allowing queries about hy-
perlinks, Squeal allows queries concerning the
contents of a page, including its header and list
structure; the structure of URLs, including the
directory components of path names; and both
verified and unverified claims by search services
about the contents or hyperlinks of a page. (This
description of Squeal is an over-simplification; a
complete discussion can be found elsewhere
[19].)

Applications

A Recommender System
One useful class of information retrieval appli-
cations is recommender systems [11], where a
program recommends new Web pages (or some
other resource) judged likely to be of interest to
a user, based on the user’s initial set of seed
pages P. A standard technique for recom-
mender systems, used by the Excite search
service (www.excite.com), is extracting key-
words that appear on the seed pages and return-
ing pages that contain these keywords. Note that
this technique is based purely on the text of a
page, independent of any inter- or in-
tra-document structure.

Another technique for making recommendations
is collaborative filtering [16], where pages are
recommended that were liked by other people
who liked P. This is based on the observation
that items thought valuable/similar by one user
are likely to by another user. As collaborative
filtering is currently practiced, users explicitly
rate pages to indicate their recommendations.
This inconvenient and expensive step can be
eliminated through data mining by interpreting
the act of creating hyperlinks to a page as being
an implicit recommendation. In other words, if a
person links to pages Q and R, we can guess that
people who like Q may like R, especially if the
links to Q and R appear near each other on the
referencing page (such as within the same list).
This mines intra-document structural informa-
tion.

Accordingly, if a user requests a page similar to
a set of pages {P1, …, Pn}, the system can find

www.manaraa.com

3

(through AltaVista) pages R that point to a
maximal subset of these pages and then return to
the user what other pages are referenced by R.
Note that the ParaSite does not have to under-
stand what the pages have in common. It just
needs to find a list that includes the pages and
can infer that whatever trait they have in com-
mon is also exemplified by other pages they
point to.

For example, the first page returned from Alta-
Vista that pointed to both Electronic Privacy
Information Center (“www.epic.org”) and Com-
puter Professionals for Social Responsibility
(“www.cpsr.org/home.html”) was a list of or-
ganizations fighting the Communications De-
cency Act; links included the Electronic Frontier
Foundation (“www.eff.org”) and other related
organizations.

Note the similarity to bibliometrics, the statisti-
cal study of documents, which includes citation
indexing [13]. Co-citation refers to when two
papers are referenced by a common source [17]
and is equivalent to the ParaSite’s judging two
web documents similar if they are both pointed
to by the same page. The term “sitation” has
been coined by Gerry McKiernan to describe the
study of links between Web pages [12], and Jon
Kleinberg has developed sophisticated algo-
rithms for studying Web topology [6]. What is
novel about this work is the ease with which
heuristics can be written and tested.

Implementation
We use the following algorithm to find pages
similar to P1 and P2:

1. Generate a list of pages R that point to
P1 and P2.

2. List the pages most commonly pointed
to by pages within R.

Some heuristics for improving precision are:

1. Only return target pages that include a
keyword specified by the user.

2. Return the names of hosts frequently
referenced.

3. Only return target pages that point to
one or both of P1 and P2.

4. Only follow links that appear in the
same list and under the same header as
the links to P1 and P2.

This last heuristic was motivated by the obser-
vation that some pages contains hundreds or
thousands of links and that the most similar pairs
of links are likely to be within the same list or
under the same header.

The Squeal code for the recommender system,
including the last heuristic, is shown in Figure 1.
While the syntax may be confusing to people not
familiar with Squeal or SQL, note the relative
size of the code and the comments. It shows that
expressing an application in Squeal takes
roughly the same amount of space as expressing
it in English, something we also found to be true
for our other applications.

// Create a table in which to store
// parent URLs
CREATE TABLE parent(url_id url_id,
hstruct BINARY(6), lstruct BINARY(6));

// Store the source pages of hyperlinks
// pointing to the seed page, along
// with information about where in the
// header and list structure of the
// page the link appeared (e.g., on
// list 2 under header 1).
INSERT INTO parent (url_id, hstruct,
lstruct)
SELECT DISTINCT source_url_id, hstruct,
lstruct
FROM link
WHERE dest_url_id = pageid;

// Show the destinations of the links
// specified in the “parent” table.
// List the most-frequently referenced
// pages first.
SELECT v.vcvalue, COUNT(*)
FROM link l, parent p, valstring v,
urls u
WHERE l.source_url_id = p.url_id
 AND l.dest_url_id = u.url_id
 AND u.value_id = v.value_id
 AND l.hstruct = p.hstruct
 AND l.lstruct = p.lstruct
GROUP BY v.vcvalue
HAVING COUNT(*) >= threshold
ORDER BY COUNT(*) DESC;

Figure 1: Squeal code for similar page finder.
Lines beginning with slashes are comments.

Evaluation
To compare the structure-based and text-based
approaches, we used the above ParaSite with the
last heuristic and the Excite “more like this”
feature. Because Excite can only find pages
similar to a single page, not a set of them, we

www.manaraa.com

4

only provide a single URL to each system for
each round of the test.

We had four human subjects submit a set of seed
URLs that interested them. For thirteen URLs
given, we provided users with the top 5 recom-
mendations of each system, which users then
rated on a scale of 0 to 4 for relevance, interest-
ingness, and novelty. As subjects pointed out, a
rating for novelty seems not to be applicable
when a page was entirely irrelevant. For this
reason, when “averaging” ratings, novelty was
treated as zero when relevance was zero. Full
details about the experiment appear elsewhere
[19].

On average, the Excite pages were judged more
relevant (1.84 vs. 1.36) and interesting (1.63 vs.
1.47) than the ParaSite pages, while the ParaSite
pages were judged more novel (1.32 vs. 1.12).
The results of the evaluation of each set of rec-
ommendations can be divided into three cases:
those where all the ParaSite averages were
higher (3), where the Excite averages were
higher (4), and where the results are mixed (6).
I discuss one example in each category.

ParaSite superior: Austin weather
The URLs returned by each system for the page
entitled “The Weather Channel – Austin, TX”
(www.weather.com/weather/us/cities/TX_Austi
n.html) are shown in Figure 2. Excite returned
Weather Channel reports on other cities in the
Southwest, while ParaSite generally returned
information, not necessarily weather-related,
about Austin or the whole of Texas. Three of
the users, including the one who submitted the
seed URL, preferred the ParaSite listings. The
fourth reviewer thought that the weather infor-
mation returned by Excite was more relevant.
Quantitatively, the ParaSite pages were judged
more relevant (1.4 vs. 95), interesting (1.8 vs.
.95), and novel (1.37 vs. .25) than the Excite
pages.

Description
r i n

TWC: Lamesa, TX 1 1 .25
TWC: Seminole, TX 1 1 .25
TWC: Pecos, TX 1 1 .25
TWC: Muleshoe, TX 1 1 .25
TWC: Hot Springs, AZ .75 .75 .25

Excite averages .95 .95 .25
Austin weather 2.75 2.75 2.25
Austin guide 2 2 1.75
Texas magazine 1.25 1.75 2
Jokes .25 1.5 .25
Austin information .75 1.25 .75

ParaSite averages 1.40 1.85 1.40

Figure 2: User Ratings of Austin Weather Rec-
ommendations. “The Weather Channel” is ab-
breviated “TWC”. The letters “r”, “i”, and “n”
stand for “relevance”, “interestingness”, and

“novelty”, respectively.

Excite Superior: MapQuest
The URLs returned by each system for the
“MapQuest!” (www.mapquest.com) home page
are shown in Figure 3. All 5 sites returned by
Excite were highly relevant map-related sites.
The 5 sites returned by ParaSite were all related
to travel but much less directly, such as tourist
information about San Diego. Excite was rated
better for all measures.

Description
r i n

Geography & Maps 2.5 2.25 1.75
AOL NetFind 2.5 2.5 1.75
Maps on the Net 2.25 2 1.5
GeoSystems 2 1.5 1.5
MapQuest 1.75 1 .25

Excite averages 2.20 1.85 1.35
PCL Map Collection 1.75 1.75 1.125
Subway navigator 1 1.75 1.25
Xerox Map Viewer 1.25 1.75 1
San Diego information .25 1 .25
More San Diego info .25 .75 .25

ParaSite averages .90 1.40 .78

Figure 3: User Ratings of MapQuest Recom-
mendations

Neither System Superior: Geek Site of the Day
The URLs returned by each system for the
“Geek Site of the Day” (www.owlnet.rice.edu/
~indigo/gsotd/) are shown in Figure 4. Because
ParaSite only made four recommendations, only
the top four Excite recommendations are listed.

www.manaraa.com

5

Two of the Excite recommendations were arti-
cles about GSotD, one was a review of GSotD
and similar sites, and one was a GSotD archive.
The ParaSite selections were more diverse: the
first two were collections of cool/useless pages,
the next was the home page of “CNET: The
Computer Network”, and the fourth was the Mu-
seum of Bad Art. The Excite pages were con-
sidered more relevant (1.94 vs. 1.71), while the
ParaSite pages were considered more interesting
(1.83 vs. 1.44) and novel (2.13 vs. .94). Users
disagreed in their written comments as to which
system was preferable:

“System A [Excite] came up with one good
suggestion. System B [ParaSite] came up
with several. System B [ParaSite] wins…”

“I assume the person wants sites that would
be interesting or funny to the computer geek,
such as things in poor taste. In this case I
would choose system A [Excite].”

Description
r i n

WebCrawler review 2.25 1.75 1.25
PC Novice mention 1.5 .75 0
GSotD, Sep. 1995 2.25 1.75 .75
News Herald review 1.75 1.5 1.75

Excite averages 1.94 1.44 .94
Cool Site of the Day 2 2.25 2
Useless Pages 2.08 2.08 2.5
CNET.COM 1.75 1.75 2
Museum of Bad Art 1 1.25 2

ParaSite averages 1.71 1.83 2.13

Figure 4: User Ratings of Geek Site of the Day
(GSotD) Recommendations.

Discussion
The ParaSite suggestions were judged more
novel, while the Excite ratings were judged
more relevant and interesting. Each system was
markedly superior to the other in some cases.
Some possible conclusions are:

1. The text-based approach is likelier than the
structure-based approach to stay within the
seed web site, yielding pages that users find
more relevant but less novel.

2. Neither of the two approaches is always su-
perior. Whether the text- or structure-based
approach is better depends on the type of
link and the user's purpose.

3. A superior system could be built by com-
bining the two approaches.

4. The structure-based approach would have
generated more useful results if more pages
had been examined for each seed URL.

Further evaluation is planned.

At a higher level, we consider the following
points highly significant:

• A nontrivial comparison between the best
commercial text-based recommender system
for Web pages and a simple structure-based
system.

• Structure-based algorithms can be expressed
quickly and simply in Squeal, allowing easy
prototyping and testing.

Home Page Finder
A new type of application made necessary by
the Web is a tool to find users’ personal home
ages, given their name and perhaps an affilia-
tion. Like many information classification tasks,
determining whether a given page is a specific
person’s home page is an easier problem for a
person to solve than for a computer. Conse-
quently, ParaSite’s primary strategy is not de-
termining directly if a page “looks like” a home
page but finding pages that human beings have
labeled as being someone’s home page. While
there is no single stereotypical title for home
pages, there is for the anchor text of hyperlinks
to them: the author’s name. For example, an
AltaVista search for pages containing the name
“Nicholas Kushmerick” returned 27 links, none
of them to his home page. In contrast, a search
for hyperlinks with anchor text “Nicholas
Kushmerick” returned three matches, two of
which were links to the correct home page and
one to his email address. This is an example of
taking advantage of inter-document structure.
In contrast, the Ahoy! home page finder [15]
generates candidates by searching for the name
anywhere in a document.

Another class of useful structural information is
intra-document structure. For example, it is
more significant if the name “Nicholas
Kushmerick” appears in the title field of a page
than in the body.

www.manaraa.com

6

The structure of the URL can also be used. The
URL of Kushmerick’s home page is:
“http://www.cs.washington.edu/homes/nick/”.
This is easily recognized as a likely home page
because:

1. The file name is the empty string. (Other
stereotypical file names for home pages
are “index.html” and “home.html”.)

2. The final directory name is the user’s
email alias.

3. The penultimate directory name is
“homes”. (Another common penultimate
directory for home pages is “people”.)

Implementation
Our heuristics take advantage of:
• inter-document structure (hyperlinks)
• intra-document structure (headers)
• intra-URL structure

All of these types of structure can be queried in
Squeal. A portion of the code is shown in
Figure 5.

// Give ten points to pages named
// “index.htm[l]”, “home.htm[l]”, or
// <empty>.
INSERT INTO candidate (url_id, score)
FROM candidate c, urls u, parse p
WHERE u.url_id = c.url_id
AND p.url_value_id = u.value_id
AND p.depth = 1
AND (p.value LIKE 'home.htm%' OR

p.value LIKE 'index.htm%' OR p.value
LIKE '');

// Give 5 points to pages with the name
// in a title or header tag.
INSERT INTO candidate(url_id, score)
SELECT t.url_id, 5
FROM tag t, att a, valstring v
WHERE t.url_id IN (SELECT DISTINCT

url_id FROM candidate)
AND (t.name='title' OR t.name LIKE

'h_')
AND a.tag_id = t.tag_id
AND a.name = 'anchor'
AND v.value_id = a.value_id
AND v.vcvalue like fullnameExp;

Figure 5: Code from home page finder

Evaluation
Names were taken from David Aha’s list of Ma-
chine Learning and Case-Based Reasoning

Home Pages (www.aic.nrl.navy.mil/aha/peo-
ple.html), which was chosen because it was used
in the evaluation of Ahoy! [15]. Of the first fif-
teen hyperlinks appearing under the letter “A”,
twelve links still worked. We excluded the link
for “David Aha”, considering him a special case.
Of the eleven remaining names, ParaSite suc-
cessfully found nine home pages (82%) and
failed in two cases (18%), as shown in Figure 6.

Name # returned # correct

Agnar Aamodt 2 2

Gennady Argre 0 0

Kamal Ali 1 1

Carolyn Allex 3 3

Lloyd Allison 5 1

Ethem Alpaydin 1 1

Rick Alterman 2 1

Klaus-Dieter Althoff 3 2 or 3

Tim Anderson 1 1

Bill Anderson 3 0

Chuck Anderson 4 1

Figure 6: Results of Home Page Finder on
Names from Aha’s List

In one successful case, ParaSite found a better
link than the one on Aha’s list: Aha’s entry for
Lloyd Allison pointed to a one-page profile
(http://www.cs.monash.edu.au/people/profiles/ll
oyd.html) containing no links, while ParaSite
returned a link to a more traditional home page
(entitled “Lloyd Anderson - Home Page”) that
contained roughly two dozen links
(www.cs.monash.edu.au:80/lloyd/index.html).
ParaSite unequivocally failed in its search for
Bill Anderson, returning pages relevant to other
people with the name. In the case of Chuck An-
derson, links were returned both to the intended
Chuck Anderson and to others, clearly a hazard
of only using names for searches.

Moved Page Finder
Search engines frequently return obsolete URLs.
In 1995, Selberg and Etzioni found that 14.9%
of the URLs returned by popular search engines
no longer point to accessible pages [9]. With the

www.manaraa.com

7

growth and aging of the Web since their meas-
urements, the percent of obsolete URLs returned
may now be even higher. We provide two tech-
niques for tracking down moved pages.

Consider the following blurb, returned by Hot-
Bot (www.hotbot.com) in response to the query
“Lenore Blum 1943”:

Lenore Blum

Lenore Blum 1943- Written by Lisa Hayes,
Class of 1998 (Agnes Scott College) Lenore
Blum was a bright and artistic child who
loved math, art, and music from her original
introductions to them. Blum finished high
school at the age of 16, after which...

http://www.scottlan.edu/lriddle/women/BLU
M.HTM, 5359 bytes, 27Apr97

The goal of a moved-page finder is to find the
new URL Unew given the information in an out-
of-date blurb, i.e., the invalid URL Ubad and the
title of the page. In this example, Ubad is
“www.scottlan.edu/lriddle/women/BLUM.HTM
”, and the title is “Lenore Blum”.

Technique 1: Climbing the directory hi-
erarchy
We can create URL Ubase by removing directory
levels from Ubad until we obtain a valid URL.
We can then crawl from Ubase in search of a page
with the given title. This is based on the intuition
that someone who cared enough about the page
to house it in the past is likely to at least link to
the page now. In this example, the page was
quickly found; its new name was
“http://www.scottlan.edu/lriddle/women/blum.ht
m”.

Technique 2: Checking with pages that
referenced the old URL
People who pointed to a URL Ubad in the past
are some of the most likely people to point to
Unew now, either because they were informed of
the page movement or took the trouble to find
the new location themselves. Here is a heuristic
based on that observation:

1. Find a set of pages P that pointed to Ubad at
some point in the past.

2. Let P0 be the elements of P that no longer
point to Ubad anymore.

3. See if any of the pages pointed to from ele-
ments of P0 is the page we are seeking.

A question is how to recognize when we’ve
found the target page. We do this by looking for
the known title text or letting the user specify a
key phrase.

Conclusions
The three applications we have presented show
that the structural information on the Web can
be effectively mined. The Squeal source code
for the programs, one of which was included
here, show that it is possible to state useful que-
ries concisely. We believe that we have shown
that mining the Web’s structural information is
worthwhile and that Squeal provides a mean for
easily doing so.

Related work
An extractor developed within the TSIMMIS
project uses user-specified wrappers to convert
web pages into database objects, which can then
be queried [5]. Specifically, hypertext pages are
treated as text, from which site-specific infor-
mation (such as a table of weather information)
is extracted in the form of a database object.
This is in contrast to our system, where each
page is converted into a set of database relations
according to the same schema.

This work is influenced by WebSQL, a language
that allows queries about hyperlink paths among
Web pages, with limited access to the text and
internal structure of pages and URLs [2][9][8].
In the default configuration, hyperlinks are di-
vided into three categories, internal links (within
a page), local links (within a site), and global
links. It is also possible to define new link types
based on anchor text; for example, links with
anchor text “next”. All of these facilities can be
implemented in our system, although WebSQL’s
syntax is more concise. While it is possible to
access a region of a document based on text de-
limiters in WebSQL, one cannot do so on the
basis of structure. Some queries we can express
but not expressible in WebSQL are:

1. How many lists appear on a page?
2. What is the second item of each list?

www.manaraa.com

8

3. Do any headings on a page consist of the
same text as the title?

W3QL is another language for accessing the
web as a database, treating web pages as the
fundamental units [7]. Information one can ob-
tain about web pages includes:

1. The hyperlink structure connecting web
pages

2. The title, contents, and links on a page
3. Whether they are indices (“forms”) and how

to access them

For example, it is possible to request that a spe-
cific value be entered into a form and to follow
all links that are returned, giving the user the
titles of the pages. It is not possible for the user
to specify forms in our system (or in WebSQL),
access to a few search engines being hardcoded.
Access to the internal structure of a page is more
restricted than with our system. In W3QL, one
cannot specify all hyperlinks originating within
a list, for example.

An additional way in which Squeal differs from
all of the other systems is in providing a data
model guaranteeing that data is saved from one
query to the next and (consequently) containing
information about the time at which data was
retrieved or interpreted. Because the data is
written to a SQL database, it can be accessed by
other applications. Another way our system is
unique is in providing equal access to all tags
and attributes, unlike WebSQL and W3QL,
which can only refer to certain attributes of links
and provide no access to attributes of other tags.

Future Work
Further evaluation should be done on these and
similar applications, although our main research
is in the Squeal programming system. We plan
to make Squeal publicly available in a variety of
formats:

• Our Just-In-Time Database [20] implemen-
tation.

• A user interface to make Squeal accessible
to people who do not know SQL.

• A CD containing the most popular sites on
the Web in database form so it can be que-
ried by any client.

We look forward to seeing what people do with
Squeal. We believe there are many possible ap-
plications of extending data mining to the Web.

References
[1] Serge Abiteboul and Victor Vianu. Queries

and computation on the web. In The Sixth
International Conference on Database The-
ory (ICDT), Delphi, Greece, January 1997.

[2] Gustavo O. Arocena, Alberto O. Mendelzon,
and George A. Mihaila. Applications of a
Web query language. In Proceedings of the
Sixth International World Wide Web Con-
ference, Santa Cruz, CA, April 1997.

[3] Justin Boyan, Dayne Freitag, and Thorsten
Joachims. A machine learning architecture
for optimizing web search engines. In Franz
[4].

[4] Alexander Franz, editor. The AAAI-96
Workshop on Internet-based Information
Systems. AAAI, August 1996.

[5] J. Hammer, H. Garcia-Molina, J. Cho, R.
Aranha, and A. Crespo. Extracting semi-
structured information from the Web. In
Proceedings of the Workshop on Manage-
ment of Semistructured Data, Tucson, Ari-
zona, May 1997.

[6] J. Kleinberg. Authoritative sources in a hy-
perlinked environment. In Proc. 9th ACM-
SIAM Symposium on Discrete Algorithms,
1998.

[7] David Knopnicki and Oded Shmueli. WWW
Information Gathering : The W3QL Query
Language and the W3QS System. ACM
Transactions on Database Systems, Septem-
ber 1998.

[8] Alberto Mendelzon, George Mihaila, and
Tova Milo. Querying the World Wide Web.
In Proceedings of the Fourth International
Conference on Parallel and Distributed In-
formation Systems, Miami, FL, 1996.

[9] George A. Mihaila. WebSQL — an
SQL-like query language for the world wide
web. Master's thesis, University of Toronto,
1996.

www.manaraa.com

9

[10] Daniel E. O’Leary. The relationship
between relevance and reliability in inter-
net-based information and retrieval systems.
In Franz [4].

[11] Paul Resnick and Hal R. Varian. Re-
commender systems (introduction to special
section). Communications of the ACM,
40(3):56-58, March 1997.

[12] Ronald Rousseau. Sitations: an ex-
ploratory study. Cybermetrics, 1(1), 1997.

[13] Jacques Savoy. Citation schemes in hy-
pertext information retrieval. In Maristella
Agosti and Alan F. Smeaton, editors, Infor-
mation Retrieval and Hypertext, pages 99-
120. Kluwer Academic Press, 1996.

[14] Erik Selberg and Oren Etzioni.
Multi-service search and comparison using
the metacrawler. In Proceedings of the
Fourth International World Wide Web
Conference, 1995.

[15] Jonathan Shakes, Marc Langheinrich,
and Oren Etzioni. Dynamic Reference
Sifting: A case study in the homepage do-
main. In Proceedings of the Sixth Interna-
tional World Wide Web Conference, April
1997.

[16] Upendra Shardanand and Pattie Maes.
Social information filtering: Algorithms for
automating “word of mouth”. In Com-
puter-Human Interaction (CHI), 1995.

[17] H. Small. Co-citation in the scientific
literature: a new measure of the relationship
between two documents. Journal of the
American Society for Information Science,
24:265-269, 1973.

[18] Ellen Spertus. ParaSite: Mining struc-
tural information on the web. In Proceed-
ings of the Sixth International World Wide
Web Conference, April 1997.

[19] Ellen Spertus. ParaSite: Mining the
Structural Information on the World-Wide
Web. PhD Thesis, Department of EECS,
MIT, Cambridge, MA, February 1998.

[20] Ellen Spertus and Lynn Andrea Stein.
Just-In-Time Databases. In Proceedings of
the Seventh International ACM Conference
on Information and Knowledge Manage-
ment, November 1998.

	Squeal: A Programming Interface to Structural Information on the Web
	
	Abstract

	Introduction
	Background
	Web
	Squeal and Just-in-Time Databases

	Applications
	A Recommender System
	Implementation
	Evaluation
	ParaSite superior: Austin weather
	Excite Superior: MapQuest
	Neither System Superior: Geek Site of the Day

	Discussion

	Home Page Finder
	Implementation
	Evaluation

	Moved Page Finder
	Technique 1: Climbing the directory hierarchy
	Technique 2: Checking with pages that referenced the old URL

	Conclusions
	Related work
	Future Work

	References

